С.В. Сябряй, А.В. Иванова, Л.Б. Зайцева

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА УГЛЕЙ ИЗ ВЕРХНЕПЛИОЦЕНОВЫХ ОТЛОЖЕНИЙ УКРАИНЫ И ВЕНГРИИ И УСЛОВИЯ ИХ ФОРМИРОВАНИЯ

Методами вуглепетрографії і палінології були встановлені палеоекологічні та палеокліматичні умови пізньопліоценового торфонакопичення буровугільних родовищ України та Угорщини.

Comparative characteristics of coals from the Upper Pliocene deposits of Ukraine and Hungary and depositional environments.

Постановка проблемы. Восстановление палеоклиматических и палеогеографических условий торфонакопления по данным изучения петрографического состава, качества и спорово-пыльцевых комплексов бурых углей позднеплиоценового возраста Украины (месторождение Ильница) и Венгрии (месторождение Вишонта).

Цель и методы исследований. Для сравнительного анализа особенностей состава и условий образования одновозрастных бурых углей месторождений Ильница и Вишонта были проведены исследования методами углепетрографии, углегеохимии, палинологии.

Изложение основного материала. *Месторождение Ильница* расположено в пределах Чоп-Мукачевской впадины Закарпатского внутреннего прогиба, примыкающего на юго-западе к Паннонскому бассейну и ограниченного складчатыми сооружениями Внутренних Карпат [6].

Углевмещающими породами являются песчано-глинистые и туфогенные отложения ильницкой свиты (левантин), которая формировалась в период активной вулканической деятельности. Об этом свидетельствует наличие вулканического пепла в углях и переслаивание угольных пластов с туфогенным материалом. Указанные отложения содержат пять угольных пластов рабочей мощности (индексация пластов сверху вниз).

Изученные пласты Ильницкого месторождения [5] сложены гумусовыми углями, в которых преобладают микрокомпоненты группы витринита (79%), имеющие разную степень сохранности анатомического строения растительных тканей. Структурные ткани (телинит) наблюдаются часто. В текстините и текстоульмините сохранены реликты строения тканей ксилемы, флоэмы, перидермы и паренхимы сосны, болотного кипариса, реже покрытосеменных (дуб, бук). Бесструктурные ткани (коллинит) представлены гелинитом, аттринитом, денсинитом, редко — поригелинитом.

В группе липтинита (14%) чаще встречаются суберинит разной степени сохранности, кутинит тонкий и толстый, зерна резинита, меланорезинит. Меланорезинит особенно часто наблюдается в текстините, выполняя полости растительных клеток. Редкими компонентами являются споринит и битуминит.

Количество компонентов группы инертинита, в основном, не превышает 7%. Они представлены фрагментами семифюзенизированных и фюзенизированных тканей, различных по размерам, форме, степени сохранности растительной структуры, а также фюзинито- аттритом и склеротинитом.

Минеральные компоненты сложены пиритом и кварцем в виде отдельных зерен или их скоплений, опалом, а также тонкими прослоечками и мелкими линзами глинистого материала с включениями туфа. Содержание минеральных примесей изменчиво.

По соотношению микрокомпонентов изученные угли относятся к классу гелитолитов, типам: гелиты, липоидо-гелиты, липоидо-фюзинито-гелиты, липоидо-фюзинито-гелититы. Преобладают гелиты (витриты), липоидо-гелиты (клариты) и липоидо-фюзинито-гелититы (дуроклариты) с фрагментарно-аттритовой структурой.

Качественные показатели углей Ильницкого месторождения [7] свидетельствуют, что угли относятся к высокозольным (26,8%), малосернистым (1,5%). Основной является сера пиритная, которая составляет 47-62% от общей серы. Выход летучих — 63%, содержание углерода — 65%. Вниз по разрезу зольность несколько увеличивается, содержание общей серы заметно растет, уменьшается выход смолы. Другие показатели практически не меняются. По показателям содержания летучих и углерода, по коэффициенту отражения витринита (0,31-0,32%) угли месторождения соответствуют бурым стадии углефикации $Б_1$.

Зола углей преимущественно кремнеземистого состава. Отношение суммы кислых окислов к основным составляет в среднем 5,2.

В количествах выше кларковых в углях содержатся редкие элементы медь, скандий, иттрий, иттербий, ванадий, молибден, марганец, кобальт, никель. Наличие указанных элементов связано, вероятно, с вулканизмом и выщелачиванием магматических пород среднего и основного состава.

Месторождение Вишонта расположено в пределах Паннонского бассейна (восточные предгорья Матры), окруженного со всех сторон складчатыми горными сооружениями Внутренних и Внешних Карпат, Альп и Динарид. Песчано-глинистые породы с включениями туффитов содержат 2-5 рабочих пластов угля [6]. Возраст этих пород сопоставляется с румынием (левантин) Восточной Европы [1, 6]. В отличие от месторождения Ильницы на территории месторождения Вишонта во время накопления угленосных отложений вулканизм не проявлялся.

Пласты месторождения [5] сложены гумусовыми углями. Компоненты группы витринита (87%) преобладают, они сложены структурными (телинит) и бесструктурными (коллинит) тканями. Чаще отмечаются бесструктурные компоненты: аттринит, эвульминит, эвгелинит, иногда поригелинит. Структурные компоненты (текстинит и текстоульминит) представлены фрагментами проводящих, покровных и паренхимных тканей.

В группе липтинита (9%) наблюдаются в основном кутинит, суберинит, резинит в аттрите или в структурных тканях древесины, а также немногочисленные включения споринита и битуминита.

Единичные компоненты группы инертинита (4%) представлены бесструктурным семифюзинитом и фюзинито-аттритом. Фрагменты структурного фюзинита и склеротинит встречаются редко.

Среди минеральных компонентов наиболее распространены пирит в виде мелких одиночных зерен или их скоплений и глинистый материал в виде тонких прослойков или микроскопических линз.

По соотношению микрокомпонентов изученные угли относятся к классу гелитолитов, типам: гелиты, липоидо-гелиты, липоидо-фюзинито-гелиты, липоидо-гелиты, липоидо-фюзинито-гелиты; преобладают гелиты (витриты), иногда встречаются липоидо-гелиты (клариты) и липоидо-фюзинито-гелититы (дуроклариты) с фрагментарно-аттритовым строением. Закономерности распространения выявленных типов углей в разрезе и по площади месторождения не установлены.

Более высокое содержание микрокомпонентов группы витринита и более низкое – липтинита и инертинита в углях Вишонты, по-видимому, связано с большей обводненностью болот и поэтому несколько иным, по сравнению с Ильницей, составом исходной растительности.

По качественной характеристике угли месторождения Вишонта [7] являются в основном малозольными (13,1%), высокосернистыми (3,4%). В углях преобладает сера пиритная, которая составляет 61-93% от серы общей. Содержание углерода (в среднем 73%) более высокое, чем в Ильнице. Никакой закономерности в распределении параметров качества по разрезу пласта не наблюдается. По показателю отражения витринита (0,27-0,29) угли соответствуют бурым стадии $\mathsf{Б}_1$.

Зола углей по составу более железистая. Отношение суммы кислых окислов к основным составляет в среднем 2,4, т.е. меньше, чем в Ильнице.

Геохимическими исследованиями установлено, что в количествах несколько выше кларковых содержатся медь, хром, цинк, кобальт, свинец и кадмий.

Сравнение качественных показателей углей Ильницы и Вишонты позволяет сделать вывод, что более высокие сернистость и содержание углерода, меньшие значения показателя отражения витринита и отношений кислых окислов к основным углей Вишонты свидетельствуют об их более высокой степени восстановленности по сравнению с ильницкими углями.

Реконструкция условий плиоценового торфонакопления по коэффициентам гелификации и сохранности структурных тканей [5, 7] показала, что накопление растительного материала в Ильнице происходило в обстановках влажных лесных болот и зарастающих озер, реже в условиях прибрежно-дельтовой равнины, что также подтверждается определением геохимических индикаторов [7]. В Вишонте торфонакопление протекало в основном на прибрежной дельтовой равнине, в меньшей степени в зарастающих озерах и обводненных лесных болотах.

Для установления времени и условий накопления растительного материала были проведены палинологические исследования углей месторождений Ильница и Вишонта [2, 3, 7-12].

Данные исследования спорово-пыльцевых комплексов углей по трем ранее выделенным горизонтам Ильницы свидетельствуют о преобладании покрытосеменных растений.

Первый спорово-пыльцевой комплекс (IV-V пласты) характеризуется высоким содержанием пыльцы широколиственных листопадных пород: Carya, Juglans, Pterocarya, Engelhardtia, Ulmus, Celtis, Zelkova, Quercus, Fagus, Castanea, Liquidambar, Parrotia, Carpinus, Nyssa, Magnolia. Отмечено низкое содержание пыльцы кустарников семейств Moraceae, Cornaceae, Caprifoliaceae, Rosaceae. Пыльца хвойных деревьев представлена родами Pinus (преимущественно Pinus s/q diploxylon), Picea, Abies, Cedrus, Keteleeria (единичные находки) и Tsuga семейства Pinaceae. Семейство Taxodiaceae представлено родами Taxodium, Glyptostrobus и Sequoia (пыльца последнего рода встречается редко). Отмечены единичные находки Ginkgo, Podocarpus, Sciadopitys. Обильны пыльцевые зерна гигро- и гидрофильных травянистых растений (семейства Сурегасеае, Hydroharitaceae, Sparganiaceae, Nymphaeaceae, Typhaceae, Potamogetonaceae, Poaceae). В углях пласта IV встречена в большом количестве пыльца рода Rynchospora (семейство Сурегасеае), характерного для мезотрофных болот. Пыльца других травянистых растений (из семейств Plantaginaceae, Polygonaceae, Compositae, Chenopodiacee, Fabaceae, Ranunculaceae) относительно редкая. В этом же комплексе многочисленны споры сфагновых мхов (Sphagnum). Определены споры папоротников Osmunda, Polypodium, Dryopteris, Onoclea. Встречены также споры и другие остатки грибов, пресноводные диатомовые водоросли [2].

Спектры второго комплекса (III пласт) достаточно однородны. Следует отметить, что как количественно, так и качественно спектры из углей третьего пласта беднее, чем из углей первого и третьего комплексов. В его составе отсутствуют макротермные элементы, наблюдается более низкое содержание пыльцы покрытосеменных за счет повышения количества пыльцы *Taxodium* и спор *Osmunda*. Характерной особенностью спектров углей второго горизонта является отсутствие пыльцы *Celtis*.

В спектрах углей I и II пластов (третий комплекс) голосеменные представлены пыльцой растений из семейств Pinaceae и Taxodiaceae, причем пыльца последнего семейства преобладает (*Taxodium, Glyptostrobus* и *Sequoia*). Пыльца первых двух родов доминирует, пыльца третьего – редкая. Пыльца хвойных растений представлена родами *Pinus, Picea, Tsuga (T. cf. canadensis (L.) Carr., T. cf. diversofolia (Maxim.)Mast.), Abies (A. cf.alba Mill.).* Пыльцевые зерна *Cedrus, Podocarpus* и *Ginkgo* единичны.

Пыльца широколиственных листопадных пород встречена в больших количествах, однако ее в третьем комплексе меньше, чем в первом. Это пыльца *Carya* (наиболее обильна), *Juglans, Pterocarya, Quercus, Fagus.* В некоторых образцах наблюдаются единичные находки пыльцы *Castanea.* Пыльца дуба в третьем комплексе многочисленней и разнообразней, чем в первом. Пыльца *Ulmus Zelkova* отмечена в таких же количествах, как и в первом комплексе, а количество пыльцы *Celtis* в спектрах из углей этого комплекса гораздо меньшее, чем в спектрах первого. Отмечено разнообразие и большее количество пыльцы растений семейства Betulaceae, а также пыльцы из семейств Натамента (род *Liquidambar*) и Tiliaceae (*Tilia*). Пыльца термофильных растений встречается редко, находки *Platycarya*, *Engelhardtia*, *Aralia*, *Ilex*, *Nyssa* и семейства Magnoliaceae единичны.

Количество пыльцы кустарниковых растений небольшое. Это главным образом представители семейств Cornaceae, Celastraceae, Caprifoliaceae, Elaeagnaceae, Rosaceae. Пыльца травянистых форм гигро-, гидро- и мезофильных растений принадлежит к семействам Potamogetonaceae, Typhaceae, Hydroharitaceae, Poaceae.

Определено большое количество разнообразных спор, особенно в осадках верхней части угольной толщи, принадлежащих к семейству Polypodiaceae. Определены также споры папоротника Osmunda, водного папоротника Salvinia, плауна Lycopodium, хвоща Equisetum, сфагновых и зеленых мхов. В углях угольного пласта II выявлены споры Lusatisporis punctatus Krutzsch и L. perinatus Krutzsch, которые характерны только для этого пласта.

Анализ состава трех спорово-пыльцевых комплексов позволяет сделать вывод, что торфонакопление происходило в условиях лесного ландшафта со смешанными хвойношироколиственными лесами, в лесных болотах с *Taxodium, Glyptostrobus*, папоротниками *Osmunda*, а также в зарастающих пресноводных водоемах. Климат во время образования всех пяти пластов был теплоумеренным, достаточно влажным, однако наблюдались небольшие колебания температуры. Применив методику В.П. Гричука с соавторами [4], мы определили количественные показатели климата (средние температуры наиболее холодного (СТХМ), наиболее теплого месяцев (СТТМ) и среднегодовую температуру (СГТ) для времени образования каждого угольного пласта. Наиболее теплый климат был во время образования угольных пластов V и IV (табл.1).

Некоторое похолодание было отмечено во время образования пласта III, когда состав растительности стал более обедненным по сравнению с составом растительности нижних и верхних пластов. Исчезли термофильные элементы, включая солнцелюбивый род *Celtis*, в то время как такие растения как, *Taxodium, Glyptostrobus, Osmunda,* произрастали свободно. Это явление, вероятнее всего, можно объяснить активным проявлением вулканических процессов с выбросами большого количества пепла. Об этом свидетельствуют прослои пепловых туфов внутри угольного слоя и подстилающие третий

пласт. Перед накоплением пластов I и II вулканические проявления стали слабее, температура несколько повысилась. Растительный покров стал более богатым.

тура несколько повысилась. Растительный покров сталт более богатым.
Таблица 1.
Температурные показатели климата времени накопления углей Ильницы

Параметры температур, С°	Пласты IV и V	Пласт III	Пласты I и II
CTXM	-0,5°C - +11,5°C	-3,8°C - +11,2°C	-0,5°C - +9,5°C
CTTM	+19,2°C - +27°C	+19,2° C - +26°C	+19,8° C - +27°C
СГТ	+14,3°C	+13,0°C	+13, 8°C

Проанализированные спорово-пыльцевые комплексы свидетельствуют о времени накопления угольных пластов IV V – дакий (левантин), времени образования угольных пластов I, II, III – румыний (левантин) [7].

Палинологические исследований углей Вишонты проведены по образцам, отобранным из шестиметровой толщи бурого угля, представленной переслаивающимися лигнитами и землистыми, слабо уплотненными углями (обр. 4, 5, 6, 9, 11, 13) [11]. Спорово-пыльцевые спектры углей месторождения Вишонты отличаются от таковых месторождения Ильницы таксономическим составом и степенью сохранности пыльцевых зерен. Как правило, пыльцевые зерна углей Вишонты худшей сохранности. Состав спорово-пыльцевых спектров характеризуется в основном равным количеством пыльцы голосеменных и покрытосеменных, иногда пыльца голосеменных преобладает. Во всех изученных образцах угля на фоне общего количества пыльцы наблюдается преобладание пыльцевых зерен *Glyptostrobus* и *Alnus*, малое количество пыльцы *Таходіит*. В небольших количествах встречается пыльца *Pinus*, *Picea*, *Cedrus*. В некоторых образцах (обр. 9,11) отмечены пыльцевые зерна *Tsuga*. Покрытосеменные чаще представлены пыльцой рода *Alnus* из семейства Betulaceae.

В широколиственных породах преобладает пыльца *Castanea, Fagus, Quercus* (семейство Fagaceae), *Celtis, Zelkova, Ulmus* (семейство Ulmaceae), *Berrya* (семейство Tiliaceae), а среди кустарниковой растительности — пыльца семейств Cornaceae, Rosaceae, Ericaceae, Myricaeae. В образцах отмечено наличие пыльцы травянистых водних растений, например, роды *Potamogeton, Typha, Sparganium, Phragmites*, а также единичные экземпляры пыльцы наземних трав. Для спорово-пыльцевых спектров всех изученных образцов характерно присутствие спор пресноводных водорослей (*Scenedemus-Ovoidites* cf. *ligneolus* Pot., *Tetraporina*), спор папоротников *Polypodium*, *Osmunda*, мхов *Sphagnum*.

Анализ состава спорово-пыльцевых спектров месторождения Вишонты свидетельствует, что торфонакопления происходило на широкой равнине заболоченной дельты древней реки, уровень воды которой менялся, приводя к изменению степени обводненности болот. Здесь же располагались пресноводные зарастающие водоемы. Для прибрежных, иногда обводненных лесов были характерны растительные группировки с Glyptostrobus, Alnus, Osmunda, Nyssa, Taxodium. Увеличение количества пыльцы Taxodium и Nyssa, наблюдаемое в обр. 4, 5, 9, 11-13, свидетельствует о понижении степени обводненности, подтверждая вывод о ее колебании на всем протяжении торфонакопления. В долинных лесах произрастали представители родов Alnus, Pterocarya, Carya.

Температурные показатели времени накопления углей Вишонты были вычислены по методике В.П. Гричука [4] (табл. 2). Изменение температурной кривой в сторону снижения температур в основном за счет снижения зимних температур четко прослеживается с конца левантина к эоплейстоцену.

Таблица 2. **Температурные показатели времени накопления углей Вишонты**

Параметры						
температур, С°	Обр. 4	Обр. 5	Обр. 6	Обр. 9	Обр. 11	Обр. 13
CTXM	-4, - +12°	-2,5 - +12°	-3,5 - +11°	-4,5 - +12°	-4,2 - +12°	-4,2 - +11,5°
CTTM	+19 - +26°	+19 - +26°	+16 - +24,2°	+12 - +27°	+17 - +27°	+17 - +27°
СГТ	+14,3°	+14,6°	+14,4°	+12,8°	+12,8°	+12,7°

Необходимо отметить, что спорово-пыльцевые комплексы Вишонты характеризуються меньшим разноообразием палиноморф, меньшим количеством теплолюбивых покрытосеменных растений.

Возраст углей Вишонты определялся венгерскими геологами по-разному – от дакия до плейстоцена [1, 12]. В спорово-пыльцевых спектрах углей Вишонты больше четвертичных элементов, чем в составе углей Ильницы. По нашему мнению, венгерские угли несколько моложе ильницких, их возраст можно отнести к концу левантина или даже к эоплейстоцену [11].

Заключение. В результате проведенных работ было определено структурное положение буроугольных месторождений неогенового возраста Ильница (Украина) и Вишонта (Венгрия), а также изучены петрографические, геохимические, качественные характеристики углей, спорово-пыльцевые комплексы исходного растительного материала углей, установлены палеоэкологические и палеоклиматические условия торфонакопления.

Итак, в левантинский век торфонакопление как на территории Ильницкого месторождения, так и Вишонты происходило в условиях расчлененного рельефа предгорий и озерно-аллювиальных равнин, в обводненных и влажных лесных болотах, зарастающих пресноводных водоемах и прибрежных дельтовых равнинах. Основными растениями-торфообразователями, по данным спорово-пыльцевых комплексов, были представители теплоумеренного климата, среди которых превалировали древесные и кустарниковые формы.

Следует остановиться и на некоторых особенностях условий торфонакопления на территориях сравниваемых месторождений. В Ильнице, в отличие от Вишонты, торфонакопление происходило в обстановках менее обводненных, по-видимому, более проточных болот и при активном синхронном вулканизме (высокая зольность углей), в условиях более теплого климата. Это сказалось на характере растительности и на преобразовании торфа под влиянием био- и геохимических факторов. В результате угли месторождений несколько отличаются как по петрографическому составу, так и по химическим и геохимическим характеристикам. Накопление углей Вишонты происходило в период спада вулканической деятельности. По сравнению с ильницкими, этим углям присущи более высокое содержание микрокомпонентов группы витринита (преобладание гелитов), меньшая зольность, более высокая степень восстановленности, более узкий спектр и меньшие концентрации малых элементов.

Историко-геологический сравнительный анализ фациальных условий торфонакопления, вещественного состава, качества и палинологической характеристики

углей исследованных месторождений позволяет решать широкий круг вопросов: палеогеографическое районирование, прогноз качества углей, разработка эффективных способов добычи и рационального использования полезного ископаемого, оценка влияния добычи и переработки на окружающую среду, расширение топливно-энергетического комплекса Украины и Венгрии.

- 1. *Вадас Э.* Геология Венгрии. М.: Мир, 1964. 532 с.
- Водоп'ян Н.С. Діатомові водорості з пліоценових відкладів Закарпаття // Укр. ботан. журн. 1979. Т. 35. – № 2. – С. 141-146.
- 3. *Вознесенский А.И.* Особенности условий образования миоцен-плиоценовых угленосных отложений Закарпатского прогиба // Угольные бассейны и условия их формирования. М.: Наука, 1983. С. 123-127.
- 4. *Гричук В.П., Зеликсон Э.М., Борисова О.К.* Реконструкция климатических показателей раннего кайнозоя по палеофлористическим данным. // Климаты Земли в геологическом прошлом / Редакторы А.А. Величко, А.Л.Чепалыга М.: Наука, 1987. С. 69-77.
- 5. Зайцева Л.Б., Іванова А.В., Хамор-Відо М. Порівняльна характеристика петрографічного складу вугілля неогенових вугленосних формацій України та Угорщини (на прикладі родовищ Ільниця та Вішонта) // Геол. журн.— 2004.—№ 2.— С.73-79.
- 6. *Іванова А.В., Зайцева Л.Б.* Умови неогенового торфонакопичення в Закарпатському прогині та на Паннонському масиві // Геол. журн. 2005. № 1. С. 82- 88.
- 7. *Іванова А.В., Зайцева Л.Б., Хамор-Відо М., Папаі Л.* Якість вугілля як показник умов торфонакопичення (на прикладі родовищ Ільниця та Вішонта) // Геол. журн. 2004. № 3. С.46 -51.
- 8. *Сябряй С.В.* Палінологічне дослідження бурого вугілля Ільницького родовища в Закарпатті // Укр. ботан. журн. 1967. Вип. 24. № 4. С. 85-91.
- 9. *Сябряй С.В.* Характеристика флоры и растительности левантинского времени Закарпатья // Флора, систематика и филогения растений. Киев: Наук. думка, 1975. С. 279-288.
- 10. *Сябряй С.В.* Палинокомплекс индикатор экологических изменений // Геологія в XXI столітті. Шляхи розвитку та перспективи. Київ: Знання, 2001. С. 284-289.
- Ivanova A., Syabryaj S., Zaitseva L., Hamor-Vido M. Palinological and petrographical reconstruction of peat accumulation in the Trans-Carpatians and in the Pannonian Basin at Ilnitsa and Visonta coalfields // Abstract Book 56th Annual Meeting of the Intern. Com. For Coal and Organic Petrolodgy. – 12-18 sept. 2004, Budapest. – 2004. – P. 55-56.
- 12. Magyar J., Hably L. Stratigraphic position of late Neogene paleobotanical sites in Hungary: Miocene Pliocene // Acta paleobot. 1994. –Vol. 34, N 2. Pp. 195-203.

Ин-т геол. наук НАН Украины

Статья поступила:

Киев

28 июля 2011 г.